3.6.87 \(\int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\) [587]

3.6.87.1 Optimal result
3.6.87.2 Mathematica [A] (verified)
3.6.87.3 Rubi [A] (verified)
3.6.87.4 Maple [B] (verified)
3.6.87.5 Fricas [F(-1)]
3.6.87.6 Sympy [F(-1)]
3.6.87.7 Maxima [F]
3.6.87.8 Giac [F]
3.6.87.9 Mupad [F(-1)]

3.6.87.1 Optimal result

Integrand size = 23, antiderivative size = 128 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {2 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{a^2 d}+\frac {2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{3 a d}+\frac {2 b^2 \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a^2 (a+b) d}+\frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {2 b \sin (c+d x)}{a^2 d \sqrt {\cos (c+d x)}} \]

output
2*b*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+ 
1/2*c),2^(1/2))/a^2/d+2/3*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)* 
EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/a/d+2*b^2*(cos(1/2*d*x+1/2*c)^2)^(1/ 
2)/cos(1/2*d*x+1/2*c)*EllipticPi(sin(1/2*d*x+1/2*c),2*b/(a+b),2^(1/2))/a^2 
/(a+b)/d+2/3*sin(d*x+c)/a/d/cos(d*x+c)^(3/2)-2*b*sin(d*x+c)/a^2/d/cos(d*x+ 
c)^(1/2)
 
3.6.87.2 Mathematica [A] (verified)

Time = 2.82 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.64 \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\frac {\frac {2 \left (2 a^2+9 b^2\right ) \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}+8 a \left (2 \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )-\frac {2 a \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{a+b}\right )+\frac {4 (a-3 b \cos (c+d x)) \sin (c+d x)}{\cos ^{\frac {3}{2}}(c+d x)}+\frac {6 \left (-2 a b E\left (\left .\arcsin \left (\sqrt {\cos (c+d x)}\right )\right |-1\right )+2 a (a+b) \operatorname {EllipticF}\left (\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )+\left (-2 a^2+b^2\right ) \operatorname {EllipticPi}\left (-\frac {b}{a},\arcsin \left (\sqrt {\cos (c+d x)}\right ),-1\right )\right ) \sin (c+d x)}{a \sqrt {\sin ^2(c+d x)}}}{6 a^2 d} \]

input
Integrate[1/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])),x]
 
output
((2*(2*a^2 + 9*b^2)*EllipticPi[(2*b)/(a + b), (c + d*x)/2, 2])/(a + b) + 8 
*a*(2*EllipticF[(c + d*x)/2, 2] - (2*a*EllipticPi[(2*b)/(a + b), (c + d*x) 
/2, 2])/(a + b)) + (4*(a - 3*b*Cos[c + d*x])*Sin[c + d*x])/Cos[c + d*x]^(3 
/2) + (6*(-2*a*b*EllipticE[ArcSin[Sqrt[Cos[c + d*x]]], -1] + 2*a*(a + b)*E 
llipticF[ArcSin[Sqrt[Cos[c + d*x]]], -1] + (-2*a^2 + b^2)*EllipticPi[-(b/a 
), ArcSin[Sqrt[Cos[c + d*x]]], -1])*Sin[c + d*x])/(a*Sqrt[Sin[c + d*x]^2]) 
)/(6*a^2*d)
 
3.6.87.3 Rubi [A] (verified)

Time = 1.19 (sec) , antiderivative size = 138, normalized size of antiderivative = 1.08, number of steps used = 15, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.652, Rules used = {3042, 3281, 27, 3042, 3534, 27, 3042, 3538, 25, 3042, 3119, 3481, 3042, 3120, 3284}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {1}{\sin \left (c+d x+\frac {\pi }{2}\right )^{5/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx\)

\(\Big \downarrow \) 3281

\(\displaystyle \frac {2 \int -\frac {-b \cos ^2(c+d x)-a \cos (c+d x)+3 b}{2 \cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx}{3 a}+\frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {-b \cos ^2(c+d x)-a \cos (c+d x)+3 b}{\cos ^{\frac {3}{2}}(c+d x) (a+b \cos (c+d x))}dx}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\int \frac {-b \sin \left (c+d x+\frac {\pi }{2}\right )^2-a \sin \left (c+d x+\frac {\pi }{2}\right )+3 b}{\sin \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{3 a}\)

\(\Big \downarrow \) 3534

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {2 \int -\frac {a^2+4 b \cos (c+d x) a+3 b^2+3 b^2 \cos ^2(c+d x)}{2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}+\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}}{3 a}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a^2+4 b \cos (c+d x) a+3 b^2+3 b^2 \cos ^2(c+d x)}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\int \frac {a^2+4 b \sin \left (c+d x+\frac {\pi }{2}\right ) a+3 b^2+3 b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3538

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {3 b \int \sqrt {\cos (c+d x)}dx-\frac {\int -\frac {a \cos (c+d x) b^2+\left (a^2+3 b^2\right ) b}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}}{a}}{3 a}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {a \cos (c+d x) b^2+\left (a^2+3 b^2\right ) b}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx}{b}+3 b \int \sqrt {\cos (c+d x)}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {a \sin \left (c+d x+\frac {\pi }{2}\right ) b^2+\left (a^2+3 b^2\right ) b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+3 b \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx}{a}}{3 a}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\int \frac {a \sin \left (c+d x+\frac {\pi }{2}\right ) b^2+\left (a^2+3 b^2\right ) b}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx}{b}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3481

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {3 b^3 \int \frac {1}{\sqrt {\cos (c+d x)} (a+b \cos (c+d x))}dx+a b \int \frac {1}{\sqrt {\cos (c+d x)}}dx}{b}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {3 b^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx+a b \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx}{b}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {3 b^3 \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )} \left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )}dx+\frac {2 a b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

\(\Big \downarrow \) 3284

\(\displaystyle \frac {2 \sin (c+d x)}{3 a d \cos ^{\frac {3}{2}}(c+d x)}-\frac {\frac {6 b \sin (c+d x)}{a d \sqrt {\cos (c+d x)}}-\frac {\frac {\frac {6 b^3 \operatorname {EllipticPi}\left (\frac {2 b}{a+b},\frac {1}{2} (c+d x),2\right )}{d (a+b)}+\frac {2 a b \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}}{b}+\frac {6 b E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}}{a}}{3 a}\)

input
Int[1/(Cos[c + d*x]^(5/2)*(a + b*Cos[c + d*x])),x]
 
output
(2*Sin[c + d*x])/(3*a*d*Cos[c + d*x]^(3/2)) - (-(((6*b*EllipticE[(c + d*x) 
/2, 2])/d + ((2*a*b*EllipticF[(c + d*x)/2, 2])/d + (6*b^3*EllipticPi[(2*b) 
/(a + b), (c + d*x)/2, 2])/((a + b)*d))/b)/a) + (6*b*Sin[c + d*x])/(a*d*Sq 
rt[Cos[c + d*x]]))/(3*a)
 

3.6.87.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3281
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b*c - a*d)*(a^2 - b^2 
))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int[(a + b*Sin[e + f*x 
])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[a*(b*c - a*d)*(m + 1) + b^2*d*(m + n 
 + 2) - (b^2*c + b*(b*c - a*d)*(m + 1))*Sin[e + f*x] - b^2*d*(m + n + 3)*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[m, -1] && IntegersQ[ 
2*m, 2*n] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ[n]) ||  !(IntegerQ[2* 
n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) || EqQ[a, 0])))
 

rule 3284
Int[1/(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])*Sqrt[(c_.) + (d_.)*sin[(e_.) 
 + (f_.)*(x_)]]), x_Symbol] :> Simp[(2/(f*(a + b)*Sqrt[c + d]))*EllipticPi[ 
2*(b/(a + b)), (1/2)*(e - Pi/2 + f*x), 2*(d/(c + d))], x] /; FreeQ[{a, b, c 
, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 
0] && GtQ[c + d, 0]
 

rule 3481
Int[(((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)]))/((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[ 
B/d   Int[(a + b*Sin[e + f*x])^m, x], x] - Simp[(B*c - A*d)/d   Int[(a + b* 
Sin[e + f*x])^m/(c + d*Sin[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, 
 B, m}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3534
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) 
 + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x 
]*(a + b*Sin[e + f*x])^(m + 1)*((c + d*Sin[e + f*x])^(n + 1)/(f*(m + 1)*(b* 
c - a*d)*(a^2 - b^2))), x] + Simp[1/((m + 1)*(b*c - a*d)*(a^2 - b^2))   Int 
[(a + b*Sin[e + f*x])^(m + 1)*(c + d*Sin[e + f*x])^n*Simp[(m + 1)*(b*c - a* 
d)*(a*A - b*B + a*C) + d*(A*b^2 - a*b*B + a^2*C)*(m + n + 2) - (c*(A*b^2 - 
a*b*B + a^2*C) + (m + 1)*(b*c - a*d)*(A*b - a*B + b*C))*Sin[e + f*x] - d*(A 
*b^2 - a*b*B + a^2*C)*(m + n + 3)*Sin[e + f*x]^2, x], x], x] /; FreeQ[{a, b 
, c, d, e, f, A, B, C, n}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0] && 
NeQ[c^2 - d^2, 0] && LtQ[m, -1] && ((EqQ[a, 0] && IntegerQ[m] &&  !IntegerQ 
[n]) ||  !(IntegerQ[2*n] && LtQ[n, -1] && ((IntegerQ[n] &&  !IntegerQ[m]) | 
| EqQ[a, 0])))
 

rule 3538
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^ 
2)/(Sqrt[(a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])), x_Symbol] :> Simp[C/(b*d)   Int[Sqrt[a + b*Sin[e + f*x]], x] 
, x] - Simp[1/(b*d)   Int[Simp[a*c*C - A*b*d + (b*c*C - b*B*d + a*C*d)*Sin[ 
e + f*x], x]/(Sqrt[a + b*Sin[e + f*x]]*(c + d*Sin[e + f*x])), x], x] /; Fre 
eQ[{a, b, c, d, e, f, A, B, C}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 - b^2, 0 
] && NeQ[c^2 - d^2, 0]
 
3.6.87.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(424\) vs. \(2(198)=396\).

Time = 5.97 (sec) , antiderivative size = 425, normalized size of antiderivative = 3.32

method result size
default \(-\frac {\sqrt {-\left (-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (\frac {-\frac {\cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}{3 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-\frac {1}{2}\right )^{2}}+\frac {2 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{3 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}}{a}-\frac {2 b \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{a^{2} \sin \left (\frac {d x}{2}+\frac {c}{2}\right )^{2} \left (2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right )}-\frac {4 b^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, \Pi \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), -\frac {2 b}{a -b}, \sqrt {2}\right )}{a^{2} \left (-2 a b +2 b^{2}\right ) \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}}\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(425\)

input
int(1/cos(d*x+c)^(5/2)/(a+cos(d*x+c)*b),x,method=_RETURNVERBOSE)
 
output
-(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(2/a*(-1/6*cos( 
1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1 
/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/ 
2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*Ellip 
ticF(cos(1/2*d*x+1/2*c),2^(1/2)))-2/a^2*b/sin(1/2*d*x+1/2*c)^2/(2*sin(1/2* 
d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*si 
n(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin( 
1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))-4*b^3/a^2 
/(-2*a*b+2*b^2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^( 
1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticPi(cos(1 
/2*d*x+1/2*c),-2*b/(a-b),2^(1/2)))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c 
)^2-1)^(1/2)/d
 
3.6.87.5 Fricas [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \]

input
integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="fricas")
 
output
Timed out
 
3.6.87.6 Sympy [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\text {Timed out} \]

input
integrate(1/cos(d*x+c)**(5/2)/(a+b*cos(d*x+c)),x)
 
output
Timed out
 
3.6.87.7 Maxima [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="maxima")
 
output
integrate(1/((b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)
 
3.6.87.8 Giac [F]

\[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int { \frac {1}{{\left (b \cos \left (d x + c\right ) + a\right )} \cos \left (d x + c\right )^{\frac {5}{2}}} \,d x } \]

input
integrate(1/cos(d*x+c)^(5/2)/(a+b*cos(d*x+c)),x, algorithm="giac")
 
output
integrate(1/((b*cos(d*x + c) + a)*cos(d*x + c)^(5/2)), x)
 
3.6.87.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x) (a+b \cos (c+d x))} \, dx=\int \frac {1}{{\cos \left (c+d\,x\right )}^{5/2}\,\left (a+b\,\cos \left (c+d\,x\right )\right )} \,d x \]

input
int(1/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))),x)
 
output
int(1/(cos(c + d*x)^(5/2)*(a + b*cos(c + d*x))), x)